Studies on Steroidal Plant-growth Regulators.† A New Route for the Efficient Synthesis of the 2α,3α-Dihydroxy-7-oxa-6-oxo-β-homo Structural Unit of Brassinolide

Wei-Shan Zhou,*a Biao Jiang,b and Xin-Fu Panb

- ^a Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, China
- b Department of Chemistry, Lanzhou University, Lanzhou, China

A highly regioselective formation of steroidal 7-oxa lactone rings via ozone oxidation of enol silyl ethers is described.

Brassinosteroids, e.g. brassinolide $(1)^1$ and typhasterol (2), are steroidal plant growth regulators. Their remarkable biological activities and novel structural features have led to

various syntheses of these substances and their analogues.³ Baeyer–Villiger oxidation has been used successfully for the construction of the 7-oxa lactone from the 2α , 3α -dihydroxy-6-oxo moiety. However, in the case of $3\alpha(\beta)$ -hydroxy- $5\alpha(\beta)$ -6-oxo steroids, only a mixture of the 6- and 7-oxa lactones in a ratio of ca. 1:2⁴ or 4:2⁵ was obtained.

We have previously reported⁵ the regioselective prepara-

[†] For Part 9 of the series, see W. S. Tian, W. S. Zhou, B. Jiang, and X. F. Pan, *Acta Chem. Sinica*, submitted for publication.

tion of the 7-oxa lactone from methyl 3α-hydroxy-6-oxo-5αcholanate by oxidation of an enol silyl ether with ozone. We now report an extension of this reaction to 3,5-cyclocholestanone-6-one (5). Oxidation of 3,5-cyclocholesterol (4), obtained from cholesterol (3), with Jones reagent gave 3,5-cyclocholestanone (5) in 87.5% yield. Kinetic deprotonation of (5) with triethylamine in the presence of trimethylsilyl trifluoromethanesulphonate6 provided the enol trimethylsilyl ether (6),‡ m.p. 126-127 °C, quantitatively. Ozonization of (6) in dichloromethane-methanol followed by reduction with Me_2S and acidification gave a 3:1:4 mixture of (7a,b) and (8)in 90% yield, which was separated by flash chromatography. Oxidation of (7a,b) with periodic acid furnished (8) quantitatively, reduction of which with NaBH4 followed by acidification gave the 7-oxa lactone (9) {m.p. 137—138 °C, $[\alpha]_D$ -78.9° (c 1.05, CHCl₃)} in 97% yield. The overall yield was 87% in four steps from (5). All attempts to open the cyclopropane ring of (9) to form compound (10) failed. However, the cyclopropane ring of the ketone (7) could be smoothly opened

‡ All new compounds gave satisfactory analytical and spectral data. Selected spectroscopic data for (6): ¹H n.m.r., δ (CDCl₃) 0.91 (3H, s, 19-H), 4.70 (1H, s, 7-H); i.r., $v_{\text{max.}}$ (CHCl₃) 1645 cm⁻¹; m.s., m/z 456 (M^+), 441 (M^+ –Me), 367 (M^+ –OSiMe₃). (9): 1 H n.m.r., δ (CDCl₃) 0.87 (3H, s, 19-H), 4.03 (1H, d, J 12 Hz, 7β-H), 4.66 (1H, dd, J 12, 4 Hz, 7α -H); i.r., v_{max} (CHCl₃) 1720 cm⁻¹; m.s., m/z 401 (M^+ +1), 386 (M^+ -Me). (10): ${}^1\text{H}$ n.m.r., δ (CDCl₃) 0.89 (3H, s, 19-H), 4.06 (2H, m, 7-H), 5.63 (2H, m, 2 and 3-H); i.r., v_{max} (CHCl₃) 1730, 1681 cm⁻¹; m.s., m/z 400 (M^+), 385 (M^+ -Me). (15): ¹H n.m.r., δ (CDCl₃) 0.90 (3H, s, 19-H), 4.00 (1H, s, 3-H), 4.58 (1H, s, 7-H); i.r., v_{max} (CHCl₃) 1720, 1680 cm⁻¹; m.s., m/z 548 (M⁺), 553 $(M^+ - Me)$, 458 $(M^+ - OSiMe_3)$. (16): ¹H n.m.r., δ (CDCl₃) 0.90 (3H, s, 19-H), 3.65 (1H, m, 3-H), 4.60 (1H, s, 7-H); i.r., v_{max} (CHCl₃) 1720, 1680 cm⁻¹; m.s., m/z 548 (M^+), 533 (M^+ –Me). (17):'H n.m.r., δ (CDCl₃) 0.89 (3H, s, 19-H), 3.74 (1H, d, J 2.5 Hz, 7-H), 4.12 $(1H, m, 3-H); i.r., v_{max}$ (CHCl₃) 3450, 1720, 1710 cm⁻¹; m.s., m/z 420 (M^+) , 402 $(M^+ - H_2O)$. (18a): 1H n.m.r., δ (CDCl₃) 0.77 (3H s, 19-H), 3.60 (1H, m, 3-H), 3.85 (1H, d, J 2.5 Hz, 7β -H); i.r., ν_{max} . (CHCl₃) 3445, 1720, 1710 cm⁻¹; m.s., m/z 420 (M^+) , 402 (M^+) $-H_2O$). (18b): ¹H n.m.r., δ (CDCl₃) 0.77 (3H, s, 19-H), 3.60 (1H, m, 3-H), $4.00 (1H, d, J 12 Hz, 7\alpha-H)$; i.r., $v_{max} (CHCl_3) 3450$, 1720, 1710 cm⁻¹; m.s., m/z 420 (M^+). (19) ¹H n.m.r., δ (CDCl₃) 0.90 (3H, s, 19-H), 4.10 (2H, d, J 5 Hz, 7-H), 4.18 (1H, m, 3-H); i.r., ν_{max} . $(CHCl_3)$ 3450, 1720 cm⁻¹; m.s., m/z 421 $(M^+ +1)$, 403 $(M^+ +1)$ $-H_2O$). (20) ¹H n.m.r., δ (CDCl₃) 0.75 (3H, s, 19-H), 3.80 (2H, m, 7-H), 4.06 (1H, m, 3-H); i.r., v_{max} (CHCl₃) 3450, 1740, 1720 cm⁻¹; m.s., m/z 421 $(M^+ + 1)$.

Scheme 1. Reagents: \S a, p-MeC₆H₄SO₂Cl, pyridine, room temp., 24 h; b, KOAc, aq. acetone, reflux, 2 h; c, Jones oxidation; d, CF₃SO₂SiMe₃, Et₃N, 0°C, 5 min; e, O₃, CH₂Cl₂, pyridine, -78°C, then 5% HCl; f, O₃, CH₂Cl₂-MeOH, -78°C, then Me₂S, room temp., 2 h, then 5% HCl; g, HIO₄·2H₂O, Et₂O, 0°C, 2 h; h, NaBH₄, MeOH, 0°C, 4 h, then 6 M HCl-THF (1:1), 24 h; i, p-MeC₆H₄SO₃H, LiBr·2H₂O, DMF, reflux, 8 h; j, N-methylmorpholine N-oxide, cat. OsO₄, THF, room temp., 24 h.

to give the Δ^2 - α -ketol (11) in 85% yield. Treatment of (11) as in the steps (7)—(9) gave the 7-oxa lactone (10) {m.p. 138—140 °C, $[\alpha]_D$ –34° (c 0.42, CHCl₃)} in 93% yield, which was converted to the known compound (12) (Scheme 1).

When (6) was ozonized in CH₂Cl₂ solution in the presence of a small amount of pyridine,⁸ only (7a) and (7b) were obtained in a 3:2 ratio in 94% yield. Similarly, when the trimethylsilyl enol ethers (15) and (16), obtained from (13) and (14) (LDA, Me₃SiCl, TEA, THF, -78 °C), were ozo-

[§] THF = tetrahydrofuran; DMF = dimethylformamide; LDA = lithium di-isopropylamide; TEA = triethylamine.

Me₃SiO HO HO HO OH HO
$$5\beta$$
 - H, 7α - OH 5β - H, 7β - OH 5β - H, 7β - OH

Scheme 2

nized in CH₂Cl₂ solution in the presence of a small amount of pyridine (17) (90.5% yield) and (18a,b) (14:1; 96% yield), respectively, were obtained. Oxidation of (17) with periodic acid followed by reduction with NaBH4 and acidification gave the 7-oxa lactone (19) {m.p. 140-141 °C, $[\alpha]_D + 39.5$ ° (c 0.75, CHCl₃)} in 90% yield, whereas similar treatment of (18) gave the γ -lactone (20) {m.p. 191—193 °C, $[\alpha]_D$ -2.5° (c 0.86, CHCl₃)}, which after isomerization with alkali (50% Bu^tOK/ ButOH, reflux, 2 h) followed by acidification and methylation with diazomethane also gave (19) in 88% overall yield in three steps (Scheme 2).

In conclusion, this highly regioselective formation of the 7-oxa lactone ring by ozone oxidation of an enol silyl ether is a complement to the Baeyer-Villiger oxidation.

This investigation was supported by the Science Funds of the Chinese Academy of Sciences.

Received, 20th November 1987; Com. 1697

References

- 1 M. D. Grove, G. F. Spencer, W. F. Rohwedder, N. Mandava, J. F. Worley, J. D. Warthen, Jr., G. L Steffens, J. L. Flippen-Anderson, and J. C. Cook, Jr., Nature, 1979, 281, 216.
- 2 J. A. Schneider, K. Yoshihara, and K. Nakanishi, Tetrahedron Lett., 1983, 24, 3859.
- 3 G. Adam and V. Marquardt, Z. Chem., 1987, 27, 41, and references cited therein.
- 4 S. Takatsuto and N. Ikekawa, Tetrahedron Lett., 1983, 25, 917.
- W. S. Zhou, B. Jiang, and X. F. Pan, Acta Chem. Sinica, submitted for publication.
- 6 L. N. Mander and S. P. Sethi, Tetrahedron Lett., 1984, 25, 5953.
- 7 M. J. Thompson, W. J. Meudt, N. B. Mandava, S. R. Dutky, W. R. Lusby, and D. W. Spaulding, *Steroids*, 1982, **39**, 894; M. Kondo and
- K. Mori, Agric. Biol. Chem., 1983, 4, 97.
- 8 M. Anastasia, P. Allevi, P. Ciuffreda, A. Fiechi, and A. Scala, J. Chem. Soc., Perkin Trans. 1, 1986, 2117.